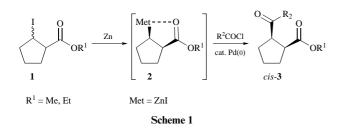
Chelation controlled *cis*-selective acylation of 2-(alkoxycarbonyl)cyclopentylzinc iodides

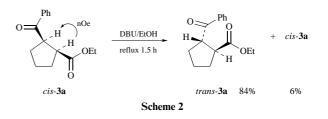

Morio Asaoka,^{*,a} Akiko Kosaka,^a Michiko Tanaka,^a Tsuyoshi Ueda,^b Takashi Houkawa^b and Hisashi Takei^b

 ^a Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Mejirodai 2-8-1 Bunkyoku, Tokyo 112, Japan
 ^b Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midoriku, Yokohama 226, Japan

The Pd(0) catalyzed acylation of 2-(alkoxycarbonyl)cyclopentylzinc iodides gives *cis*-products preferentially.

Stereocontrol at sp³ carbanionic centers is one of the most fundamental and essential subjects in organic synthesis. Generally, thermodynamically more stable *trans*-substituted products with good to high diastereomeric ratios ($80:20 \sim >99:1$) are obtained by the reactions of 2-substituted cyclopentyl- and cyclohexyl-zinc or copper species with electrophiles such as benzoyl chloride, allylic halides and vinyl iodides.¹

In contrast, we report here a highly *cis*-selective reaction of 2-(alkoxycarbonyl)cyclopentylzinc iodide **2** (Scheme 1). In con-



nection with our work on the stereocontrolled S_E reaction of chiral organometallic compounds,² we examined a chelation controlled acylation of a cyclic system. The iodo ester 1 was chosen as a starting material, since the intramolecular chelation of its organometallic derivative 2 was expected to fix the configuration in the cis-form and result in a cis-selective introduction of substituents. The zinc reagent 2 (Met = ZnI) was prepared by the treatment of iodide 1 ($R^1 = Et$) with activated zinc (3.2 equiv.) in dry 1,4-dioxane at 40 °C for 1.5 h in the presence of chlorotrimethylsilane (0.2 equiv.).³ Benzoylation of 2 $(R^1 = Et)$ with benzoyl chloride in the presence of 5 mol% of Pd[(o-tol)₃P]₄ at room temperature for 14 h gave the expected cis-3a (R¹ = Et, R² = Ph) in 90% isolated yield (Table 1, entry 1). Since use of the corresponding methyl ester as a starting material gave an inferior result (entry 2), the ethyl ester was used for the following study. Other benzoyl chloride derivatives gave the corresponding compounds cis-3c-e in good yields (entries 3–5).[†] Under the same reaction conditions, pivaloyl chloride gave cis-3f in good yield (entry 6), however, the more reactive phenylacetyl chloride afforded cis-3g in a moderate yield. A slight improvement of the yield was observed (entry 7) when the reaction was carried out under milder conditions (10-15 °C, for 2.5 h). Attempted acylation with ethyl chloroformate under various reaction conditions resulted in failure (entry 8).

 Table 1
 Chelation controlled cis-acylation of 2

Entry	\mathbb{R}^1	R ²	cis-3	Yield (%)
1 2 3 4 5 6 7 8	Et Me Et Et Et Et Et	C_6H_5 C_6H_5 p-CH ₃ C ₆ H ₄ m-ClC ₆ H ₄ p-CH ₃ OC ₆ H ₄ Bu' $C_6H_5CH_2$ OEt	3a 3b 3c 3d 3e 3f 3g 3h	90 77 71 74 55 73 51

To confirm the stereostructure of the products (*cis-3*), isomerization under basic conditions was examined. Treatment of *cis-3a* with a catalytic amount of 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) in EtOH at reflux for 1.5 h gave thermo-dynamically more stable *trans-3a* in 84% yield, and 6% of *cis-3a* was recovered.[‡] The configurations of *cis-3a* and *trans-3a* were also confirmed by NOE experiments (Scheme 2).

In conclusion, the Pd(0) catalyzed acylation of **2** with aromatic and aliphatic acid chlorides proceeded in a highly diastereoselective manner aided by intramolecular chelation to give the thermodynamically unstable *cis*-substituted cyclopentanecarboxylates (*cis*-**3**) in good yields. Since the basic isomerization gives thermodynamically more stable *trans*-isomers, the above method offers a diastereodivergent route to 2-acylated cyclopentanecarboxylates. Further extension and synthetic applications of the above types of chelation controlled S_E reactions are currently underway.

[†] Careful examination of the ¹H NMR spectra (400 MHz) of the crude products indicated the formation of a small amount of *trans*-**3** (less than 5% yield), which was easily separated by column chromatography.

[‡] Ethyl 2-benzoylcyclopentane-1-carboxylate *cis*-**3a**: $\delta_{\rm H}(400 \text{ MHz}, \text{CDCl}_3; J \text{ values are given in Hz}) 1.05 (3 H, t, J 7.1), 1.54–2.25 (6 H, m), 3.08 (1 H, q, J 8.3, CHCO₂Et), 3.94–4.00 (2 H, m), 4.07–4.13 (1 H, m, CHCOPh), 7.43–7.57 (3 H, m), 7.92–7.95 (2 H, m); <math>\delta_{\rm C}(100 \text{ MHz}, \text{CDCl}_3)$ 13.5, 23.8, 28.0, 29.6, 47.3, 48.5, 59.7, 128.0, 128.1, 132.4, 136.4, 173.4, 200.5. *trans*-**3a**: $\delta_{\rm H}(400 \text{ MHz}, \text{CDCl}_3)$ 1.18 (3 H, t, J 7.1), 1.72–2.18 (6 H, m), 3.40 (1 H, q, J 8.3, CHCO₂Et), 4.06–4.14 (3 H, m, CO₂CH₂CH₃ and CHCOPh), 7.43–7.56 (3 H, m), 7.97–8.00 (2 H, m); $\delta_{\rm C}(100 \text{ MHz}, \text{CDCl}_3)$ 112.9, 136.6, 175.2, 201.4.

Experimental

Typical procedure for the preparation of cis-3

To a suspension of activated zinc (312 mg, 4.8 mmol) in dry 1,4dioxane (2 cm³) was added 1,2-dibromoethane (34.4×10^{-3} cm³, 0.4 mmol). The mixture was heated at 65 °C for 5 min. After the addition of chlorotrimethylsilane ($40 \times 10^{-3} \text{ cm}^3$, 0.32 mmol), the mixture was stirred at room temperature for 15 min and then a 1,4-dioxane (6 cm³) solution of 1 (570 mg, 1.5 mmol) was added to the mixture. The mixture was stirred at 40 °C for 1.5 h and cooled to room temperature. To the mixture were added a 1,4-dioxane (1.5 cm³) solution of $Pd[(o-tol)_3P]_4$, which was prepared by mixing Pd₂(dba)₃(CHCl₃) (41 mg, 0.07 mmol) and (o-tol)₃P (93 mg, 0.31 mmol) in dry 1,4-dioxane at room temperature for 0.5 h, and benzoyl chloride (158.5 mg, 1.12 mmol). After stirring at room temperature for 14 h, the mixture was filtered through a short pad of Celite. Extraction with ethyl acetate and concentration under reduced pressure gave a crude mixture. Formation of the trans-isomer was estimated by 400 MHz NMR spectroscopy at this stage. Purification by flash column chromatography on silica gel (hexane-ethyl acetate = 17:1) gave *cis*-**3a** (247 mg, 90%).

Acknowledgements

We thank Professor Seizo Takahashi in this University for his help with the NOE experiments.

References

- L. Micouin, M. Oestreich and P. Knochel, Angew. Chem., Int. Ed. Engl., 1997, 36, 245; R. Duddu, M. Eckhardt, M. Furlong, H. P. Knoess, S. Berger and P. Knochel, Tetrahedron, 1994, 50, 2415; T. N. Majid, M. C. P. Yeh and P. Knochel, Tetrahedron Lett., 1989, 30, 5069.
- 2 T. Houkawa, T. Ueda, S. Sakami, M. Asaoka and H. Takei, *Tetrahedron Lett.*, 1996, **37**, 1045.
- 3 Generation and reactions of organozinc iodides: P. Knochel and R. D. Singer, *Chem. Rev.*, 1993, **93**, 2117 and references cited therein.

Paper 7/05554D Received 31st July 1997 Accepted 1st September 1997